Browse Source

added content to long presentation

master
Michael Preisach 6 years ago
parent
commit
55e46be59a
  1. 2
      presentation/191119_long/header.tex
  2. BIN
      presentation/191119_long/long.pdf
  3. 75
      presentation/191119_long/long.tex
  4. BIN
      references/Camenisch-Bilinear_Maps.pdf
  5. BIN
      references/Camenisch-Efficient_DAA_Scheme.pdf
  6. 58
      resources/daa.fig
  7. BIN
      resources/daa.pdf

2
presentation/191119_long/header.tex

@ -24,6 +24,8 @@
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{textcomp}
\usepackage{amssymb}
\usepackage{mathtools}
%properties for listings:

BIN
presentation/191119_long/long.pdf

Binary file not shown.

75
presentation/191119_long/long.tex

@ -54,19 +54,86 @@
\begin{frame}
\frametitle{Solution: Direct Anonymous Attestation (DAA)}
\begin{center}
\includegraphics[width=0.7\textwidth]{../../resources/daa}
\end{center}
\begin{itemize}
\item based on group signatures
\item Zero Knowledge Proof to verify group membership
\item defines 3 Parties
\begin{itemize}
\item Issuer: provides public key for a group (e.g. all Biometric Sensors) and manages group memberships
\item Member: holds a group private key to sign messages (e.g. a Biometric Sensor)
\item Verifier: knows the group public key and is able to verify correctness of signature (e.g. Personal Agent)
\item \emph{Issuer}: provides public key for a group (e.g. all Biometric Sensors) and manages group memberships
\item \emph{Member}: holds a group private key to sign messages (e.g. a Biometric Sensor)
\item \emph{Verifier}: knows the group public key and is able to verify correctness of signature (e.g. Personal Agent)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{DAA Setup: Issuer creates Bilinear Group and Keys}
\begin{eqnarray*}
q,\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, g_1, g_2, e
\end{eqnarray*}
\begin{itemize}
\item $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$: groups of prime order $q$
\item $g_1 \in \mathbb{G}_1$, $g_2 \in \mathbb{G}_2$: generator points
\item $e$: bilinear map with properties
\begin{itemize}
\item \emph{Bilinear}: For all $P \in \mathbb{G}_1, Q \in \mathbb{G}_2$, for all $a,b \in \mathbb{Z}$, $ e(P^a,Q^b) = e(P,Q)^{ab}$
\item \emph{Non-degenerate}: There exists some $P \in \mathbb{G}_1, Q \in \mathbb{G}_2$ such that $e(P,Q) \neq 1$, where 1 is the identity of $\mathbb{G}_T$
\item \emph{Efficient}: There exists an efficient algorithm for computing $e$
\end{itemize}
\item Choose secret key $x\leftarrow\mathbb{Z}_q$, $y\leftarrow\mathbb{Z}_q$
\item generate public key $X=g_2^x$, $Y=g_2^y$
\end{itemize}
\item used DAA is based on Elliptic Curves (ECDAA)
\end{frame}
\begin{frame}
\frametitle{Bilinear Maps}
Definition Bilinear Maps:
\begin{itemize}
\item \emph{Bilinear}: For all $P,Q \in G$, for all $a,b \in \mathbb{Z}$, $e(P^a,Q^b) = e(P,Q)^{ab}$
\item \emph{Non-degenerate}: There exists some $P,Q \in G$ such that $e(P,Q) \not 1$ where 1 is the identity of $\mathrm{G}$
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Bilinear Maps: Signatures}
\begin{itemize}
\item given message $m$ and random number $r leftarrow \mathbb{Z}_q$
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Bilinear Maps: Zero Knowledge Proofs}
\begin{itemize}
\item Do the same as before, but choose to additional random variables $r$ and $r'$
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{DAA Join: Member joins to Issuer's Group}
\begin{center}
\begin{footnotesize}
\begin{tabular}{|lclcl|}\hline
\multicolumn{1}{|c}{TPM}&&\multicolumn{1}{c}{Host}&&\multicolumn{1}{c|}{Issuer}\\\hline
&&&$\xrightarrow{\text{JOIN}}$&$n\leftarrow\{0,1\}^{ln}$\\
$gsk\leftarrow\mathbb{Z}$&$\xleftarrow{\makebox[5mm]{n}}$&&$\xleftarrow{\makebox[5mm]{n}}$&\\
$Q\leftarrow g_1^{gsk}$&&&&\\
$\pi_1\rightarrow SPK\{(\alpha):g_1^\alpha\}$&$\xrightarrow{Q,\pi_1}$&&$\xrightarrow{Q,\pi_1}$&verify $\pi_1$\\
&&&&$r\leftarrow\mathbb{Z}_q$\\
&&&&$a\leftarrow g_1^r$\\
&&&&$b\leftarrow a^{x+ym}$\\
&&&&$c\leftarrow a^x\cdot Q^{rxy}$\\
&&&&$d\leftarrow Q^{ry}$\\
&&&&$\pi_2\leftarrow SPK\{(t):$\\
&&$e(a,X)\cdot e(c,Y)$&$\xleftarrow{a,b,c,d,\pi_2}$&$ b=g_1^t \wedge d=Q^t\}$\\
verify $\pi_2$&$\xleftarrow{b,d,\pi_2}$&$\stackrel{?}{=}e(b,g_2)$&&\\
store($gsk, b, d$)&$\xrightarrow{JOINED}$&store($a,b,c,d$)&&\\\hline
\end{tabular}
\end{footnotesize}
\end{center}
\end{frame}
\end{document}

BIN
references/Camenisch-Bilinear_Maps.pdf

Binary file not shown.

BIN
references/Camenisch-Efficient_DAA_Scheme.pdf

Binary file not shown.

58
resources/daa.fig

@ -0,0 +1,58 @@
#FIG 3.2 Produced by xfig version 3.2.7
Landscape
Center
Inches
Letter
100.00
Single
-2
1200 2
6 3750 4650 5250 5400
2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5
5250 5400 5250 4650 3750 4650 3750 5400 5250 5400
4 1 0 50 -1 4 14 0.0000 0 180 750 4500 5100 Verifier\001
-6
6 1200 3225 2700 3975
2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5
2700 3975 2700 3225 1200 3225 1200 3975 2700 3975
4 1 0 50 -1 4 14 0.0000 0 180 885 1950 3675 Member\001
-6
6 6450 3225 7950 3975
2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5
7950 3975 7950 3225 6450 3225 6450 3975 7950 3975
4 1 0 50 -1 4 14 0.0000 0 180 645 7200 3675 Issuer\001
-6
6 1650 4725 2250 5550
1 4 0 1 0 7 50 -1 -1 0.000 1 0.0000 2100 4875 106 106 2175 4800 2025 4950
1 3 0 1 0 7 50 -1 -1 0.000 1 0.0000 2100 4875 75 75 2100 4875 2100 4800
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 6
2250 4725 2250 5550 1650 5550 1650 4875 1800 4725 2250 4725
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 3
1650 4875 1800 4875 1800 4725
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
2175 4950 2175 5100 2100 5025 2025 5100 2025 4950
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
1800 5175 2100 5175
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
1800 5250 2100 5250
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
1800 5325 2100 5325
-6
6 2250 4650 3750 5100
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
2 0 1.00 120.00 180.00
3750 5025 2250 5025
4 1 0 50 -1 4 12 0.0000 0 210 510 3000 4875 verify\001
-6
6 1875 3975 2625 4725
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
2 0 1.00 120.00 180.00
1950 3975 1950 4725
4 0 0 50 -1 4 12 0.0000 0 150 525 2100 4350 attest\001
-6
6 2700 3225 6450 3675
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
2 0 1.00 120.00 180.00
2700 3600 6450 3600
4 1 0 50 -1 4 12 0.0000 0 210 330 4425 3450 join\001
-6

BIN
resources/daa.pdf

Binary file not shown.
Loading…
Cancel
Save