You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
4.8 KiB
139 lines
4.8 KiB
\documentclass[naustrian,notes]{beamer}
|
|
|
|
\input{header}
|
|
%Titelinformationen
|
|
\title[Digidow Biometric Sensor]{Digital Shadow: Biometric Sensor}
|
|
\subtitle{Master's Thesis Seminar}
|
|
\author[Michael Preisach]{Michael Preisach}
|
|
\date{November 19, 2019}
|
|
\institute[INS]{\includegraphics[width=0.1\textwidth]{../../resources/ins}}
|
|
|
|
\begin{document}
|
|
\begin{frame}
|
|
\titlepage
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Project Overview Digital Shadow}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=0.9\textwidth]{../../resources/globalview}
|
|
\end{figure}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Recap: Trust inside Biometric Sensor}
|
|
\begin{itemize}
|
|
\item manufacturer of TPM holds certificate
|
|
\item TPM holds measurements of boot chain in PCR
|
|
\begin{itemize}
|
|
\item CRTM measures BIOS
|
|
\item BIOS measures MBR/EFI Bootloader
|
|
\item bootloader measures Kernel (Grub 2.04 supports TPM2)
|
|
\item Kernel measures libs, executables, \ldots
|
|
\end{itemize}
|
|
\item TPM Quote: summarize the PCR state and sign it with TPM Endorsement Key (EK)
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Problem: Create trust beween BS and PA}
|
|
\begin{itemize}
|
|
\item network discovery
|
|
\item \textbf{no Knowledge about BS}
|
|
\begin{itemize}
|
|
\item \textbf{Hardware}
|
|
\item \textbf{Software}
|
|
\item \textbf{Am I talking to a valid BS}
|
|
\item Correct client to certify identity for given biometric data
|
|
\end{itemize}
|
|
\item \textbf{BS faces same problem with PA}
|
|
\item establish a secure channel to submit sensitive data
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Solution: Direct Anonymous Attestation (DAA)}
|
|
\begin{center}
|
|
\includegraphics[width=0.7\textwidth]{../../resources/daa}
|
|
\end{center}
|
|
|
|
\begin{itemize}
|
|
\item based on group signatures
|
|
\item Zero Knowledge Proof to verify group membership
|
|
\item defines 3 Parties
|
|
\begin{itemize}
|
|
\item \emph{Issuer}: provides public key for a group (e.g. all Biometric Sensors) and manages group memberships
|
|
\item \emph{Member}: holds a group private key to sign messages (e.g. a Biometric Sensor)
|
|
\item \emph{Verifier}: knows the group public key and is able to verify correctness of signature (e.g. Personal Agent)
|
|
\end{itemize}
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{DAA Setup: Issuer creates Bilinear Group and Keys}
|
|
\begin{eqnarray*}
|
|
q,\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, g_1, g_2, e
|
|
\end{eqnarray*}
|
|
\begin{itemize}
|
|
\item $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$: groups of prime order $q$
|
|
\item $g_1 \in \mathbb{G}_1$, $g_2 \in \mathbb{G}_2$: generator points
|
|
\item $e$: bilinear map with properties
|
|
\begin{itemize}
|
|
\item \emph{Bilinear}: For all $P \in \mathbb{G}_1, Q \in \mathbb{G}_2$, for all $a,b \in \mathbb{Z}$, $ e(P^a,Q^b) = e(P,Q)^{ab}$
|
|
\item \emph{Non-degenerate}: There exists some $P \in \mathbb{G}_1, Q \in \mathbb{G}_2$ such that $e(P,Q) \neq 1$, where 1 is the identity of $\mathbb{G}_T$
|
|
\item \emph{Efficient}: There exists an efficient algorithm for computing $e$
|
|
\end{itemize}
|
|
\item Choose secret key $x\leftarrow\mathbb{Z}_q$, $y\leftarrow\mathbb{Z}_q$
|
|
\item generate public key $X=g_2^x$, $Y=g_2^y$
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Bilinear Maps}
|
|
Definition Bilinear Maps:
|
|
\begin{itemize}
|
|
\item \emph{Bilinear}: For all $P,Q \in G$, for all $a,b \in \mathbb{Z}$, $e(P^a,Q^b) = e(P,Q)^{ab}$
|
|
\item \emph{Non-degenerate}: There exists some $P,Q \in G$ such that $e(P,Q) \not 1$ where 1 is the identity of $\mathrm{G}$
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Bilinear Maps: Signatures}
|
|
\begin{itemize}
|
|
\item given message $m$ and random number $r leftarrow \mathbb{Z}_q$
|
|
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Bilinear Maps: Zero Knowledge Proofs}
|
|
\begin{itemize}
|
|
\item Do the same as before, but choose to additional random variables $r$ and $r'$
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{DAA Join: Member joins to Issuer's Group}
|
|
\begin{center}
|
|
\begin{footnotesize}
|
|
\begin{tabular}{|lclcl|}\hline
|
|
\multicolumn{1}{|c}{TPM}&&\multicolumn{1}{c}{Host}&&\multicolumn{1}{c|}{Issuer}\\\hline
|
|
&&&$\xrightarrow{\text{JOIN}}$&$n\leftarrow\{0,1\}^{ln}$\\
|
|
$gsk\leftarrow\mathbb{Z}$&$\xleftarrow{\makebox[5mm]{n}}$&&$\xleftarrow{\makebox[5mm]{n}}$&\\
|
|
$Q\leftarrow g_1^{gsk}$&&&&\\
|
|
$\pi_1\rightarrow SPK\{(\alpha):g_1^\alpha\}$&$\xrightarrow{Q,\pi_1}$&&$\xrightarrow{Q,\pi_1}$&verify $\pi_1$\\
|
|
&&&&$r\leftarrow\mathbb{Z}_q$\\
|
|
&&&&$a\leftarrow g_1^r$\\
|
|
&&&&$b\leftarrow a^{x+ym}$\\
|
|
&&&&$c\leftarrow a^x\cdot Q^{rxy}$\\
|
|
&&&&$d\leftarrow Q^{ry}$\\
|
|
&&&&$\pi_2\leftarrow SPK\{(t):$\\
|
|
&&$e(a,X)\cdot e(c,Y)$&$\xleftarrow{a,b,c,d,\pi_2}$&$ b=g_1^t \wedge d=Q^t\}$\\
|
|
verify $\pi_2$&$\xleftarrow{b,d,\pi_2}$&$\stackrel{?}{=}e(b,g_2)$&&\\
|
|
store($gsk, b, d$)&$\xrightarrow{JOINED}$&store($a,b,c,d$)&&\\\hline
|
|
\end{tabular}
|
|
\end{footnotesize}
|
|
\end{center}
|
|
\end{frame}
|
|
\end{document}
|
|
|